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Abstract: The aim of this work is to solve the diffusion equation in two dimensions to obtain normalized crosswind integrated 

concentrations using the Laplace Transform technique, taking into account that the wind speed is constant but the vertical 

diffusivity differs from the friction velocity and the Monin -Obukhov length. A comparison of the calculated values and the 

observed concentrations taken from the northern part of Copenhagen, Denmark and also Inshas, Cairo, Egypt for trace 

hexafluoride (SF6) through unstable condition were made. It has compared the current and observed concentration one finds that 

the current concentration agreement well with the observed data. The results showed an agreement between the measurements 

and the simulations. The values for NMSE and FB are relatively close to zero, and COR, FA2 is relatively close to one. 
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1. Introduction 

Models of atmospheric dispersion were used to obtain the 

concentration of pollutants in the atmosphere. The term dispersion 

is used in this context to describe the combination of propagation 

(due to turbulent vortex movement) and adhesion (due to wind) 

occurring within the air near the surface of the earth [8]. The 

analytical solution of the diffusion equation for air diffusion 

depends on different forms of non-Gaussian solutions. An 

analytical solution with an energy law for wind speed and eddy 

diffusivities with the real assumption was examined by [3]. The 

analytical solution of the atmospheric diffusion equation contains 

different variations depending on Gaussian and non–Gaussian 

solutions. An analytical solution to the wind speed and eddy current 

power law Diffusivity with realistic assumptions is derived by 

Demuth [12] and Essa. [13]. Most of the fundamental theories of 

atmospheric diffusion were proposed in the first half of the 

twentieth century. The term "atmospheric dispersion modeling" 

refers to the mathematical simulation of atmospheric dispersion. 

Description of contaminant transport in the atmosphere is used to 

describe the combination of diffusion and advection that occurs 

within the air is analogous to the earth surface. The concentration of 

a contaminant released into the air may therefore be described by 

advection – diffusion equation by Stockie JM [14]. The advection – 

diffusion equation has been widely applied. In the operational 

atmospheric dispersion model to predict the meaning. 

Concentration of contaminants in the planetary boundary layer 

(PBL) which is obtaining the dispersion from a continuous point 

source by Tiziano T et al. [15]. For nearly thirty years, it has been 

known that vertical concentration profiles from field and laboratory 

experiments of near-surface points. Source releases exhibit a 

non-Gaussian distribution [16-18]. Describes the meteorological 

phenomena and mechanisms involved in the dispersion of 

atmospheric liquid waste, discusses ways in which concentration 

and precipitation may be calculated in the area and identifies the 

data required for the models. The diffusion has resolved in three 

dimensions using the separation of the variables technique to assess 

the concentration of pollutants for each emission rate, taking into 

account the eddy diffusivities of pollutants and wind velocity in a 

neutral state in [9]. [10] has obtained from the natural compound 

concentration of pollutants after solving the temporary diffusion 

equation using the separation method in view of the eddy 

diffusivities measured at night or at any time in the high-solubility 

layer in a stable state. The diffusion equation has solved in 

two-dimensional by the semi-infinite field by [2]. The analytical or 

numerical solutions, together with a preliminary case and two 

threshold conditions, help us to understand the behavior of the 

distribution of the concentration of contaminants through an open 
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medium such as air, rivers, lakes and porous media such as the 

aquifer, in which remedial actions are designed to reduce damage 

elimination. While obtaining analytical solutions to dispersion 

problems under optimal conditions, the basic approach was to 

reduce the propagation equation by removing advection terms [1]. 

The Laplace conversion technique was applied to the 

Advection-Diffusion Equations (ADE) in two dimensions to obtain 

crosswind integrated normalized concentration, consider wind 

speed and the vertical eddy diffusivity are constant. Data set used 

from atmospheric diffusion experiments conducted in the northern 

part of Copenhagen, Denmark was observed for hexafluoride 

traceability (SF6) Essa. [19]. It has used to solve the stable advection 

and propagation equation 2D continuous point source with vertical 

vortex propagation as force of law of vertical height and wind 

distance, using wind speed as a power law Essa. [21]. 

In the current work, the (ADE) is solved in two dimensions (x, z) 

to obtain the crosswind integrated concentration using the Laplace 

conversion technique with constant wind speed and vertical eddy 

diffusivity is variable with vertical distance. For trace hexafluoride 

(SF6), comparisons were made between calculated values and 

observed crosswind integrated normalized concentrations in the 

northern part of Copenhagen, Denmark, as well as Inshas, Cairo, 

Egypt, under unstable conditions. 

2. Analytical Solution 

The transfer of the steady state to release non-reactive 

pollutants from a point source is described by following the 

partial differential equation [4]. 

u ���� = ��� �K� ����	 + ��� �K� ����	            (1) 

C denotes the pollutant concentration, Kz is the turbulent 

eddy diffusivity coefficient assumed to be a function of the 

variable z, u is the mean wind oriented in the x direction which 

is constant. 

Diffusion in the x-direction, 
��� �K� ����	 has been very small 

relative Advection (u ����) therefore the term ��� �K� ����	  has been neglected in comparison with 

Advection 

The crosswind-integrated concentration (C�) is obtained by 

integrating equation (1) with respect to y from −∞ to +∞ 

as follows: 

u ������ = ��� �K� ������ 	                (2) 

Equation (2) becomes: 

 ������ = ��� �������� + ���� ������              (3) 

Where K��  is differential Vertical dispersion coefficient 

with respect to z. 

Equation (3) was subject to following the boundary 

conditions: 

1-The pollutant is released from an elevated source of 

strength Q located at (0, h) i.e.: 

u C�� (x, z) =Q δ (z- hs) at x=0            (4) 

Where “hs” is a stack height and δ ( ) is the Dirac delta function. 

2-The concentration of the pollutant tends to zero at large 

distance of the source i.e.: C�� (x. z) =0 at x → ∞, z→∞             (5) 

3- The flux at the ground and the height of the planetary 

boundary layer can be given by: 

Kz ���� �� = 0 at z= 0, h                     (6) 

Where h is the height of the planetary boundary layer (PBL), 

Considering the vertical eddy diffusivity  ′K�"  takes the 

form as [4]. 

 K� = �.!�∗�
#$%�&'�( 	)& *+                   (7) 

Where, u* is a friction velocity and L is the Monin -Obukhov 

length. 

Substituting from equation (7) in Equation (3), one gets as 

follows: 

������ = �.!�∗�
�#$%�&'�( 	)& *+ �������� + �.$�∗(!,�%!-)

�($,�%-) .$%&'�(*  ������      (8) 

Applying the Laplace transform on equation (8) to respect x. 

one obtains: C0(s, z) =  L56x(s);  x ⟶ s: 

s C��;(s, z) −  C(0, z) = �.!�∗�
=#$%�&'�( 	)& *+ �����; (>,�)��� + �.$�∗(!,�%!-)

�($,�%-) .$%&'�(*  ����; (>,�)��     (9) 

Where “s” is the Laplace transform from x to s 

Equation (9) becomes: 

�.!�∗�
�#$%�&'�( 	)& *+ �����; (>,�)��� + �.$�∗(!,�%!-)

�($,�%-) .$%&'�(*  ����; (>,�)�� − s C��;(s, z) =
− C(0, z)                    (10) 

Applying the Laplace transforms on equation (6) of 

boundary condition with respect to x, this becomes: 

0.1u∗(45z − 4L)
u(15z − L).1 − 15zL*

∂C��;(s, z)∂z = 0 

The equation (10) becomes: 

C ��� − D>�#$%�&'�( 	)& *+
�.!�∗� E C ��� + D>�#$%�&'�( 	)& *+

�.!�∗� E C��;(s, z) =
− �(�,�)#$%�&'�( 	)& *+

�.!�∗�                   (11) 
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Where, 

F(�)(G%H&)(GIH�) = eH&� K e%H&�eH��R(z)dz [11]. 

Where R=
�(�,�)#$%�&'�( 	)& *+

�.!�∗� , D= 
���, 

m1 =−D>�#$%�&'�( 	)& *+
�.!�∗�  and m2 =+D>�#$%�&'�( 	)& *+

�.!�∗�  

Substituting from boundary condition equation (4) in 

equation (11) one gets: 

�����; (>,�)��� − >=#$%�&'�( 	)& *+
�.!�∗�  C��;(s, z) = − N O (�% PQ)#$%�&'�( 	)�.!�∗�   (12) 

The solution of equation (12) becomes: 

C��;(s, z) =  N #$%�&'RQ( 	)& *+
�.!�∗PQ e%√>DT#&U�&'�( 	)& *+ �V.*W∗         (13) 

Apply the Laplace inverse transform on equation (13) to 

respect x, one obtains that: 

��� (�,�)N =   #$%�&'RQ( 	)& *+
�.!�∗PQ CD�#$%�&'�( 	)& *+ ��.!�∗X�  e%W#&U�&'�( 	)& *+ �V.&YZW∗ E (14) 

and 

C(x, y, z) = C�� (x, z) [\U ���]��
√^X_� `             (15) 

The equation (15) becomes: 

C(x, y, z) =
b
ccc
dN #$%�&'RQ( 	)& *+

�.!�∗PQX_�
b
ccd

D�#$%�&'�( 	)& *+ ��.e�∗�

 e%CW#&U�&'�( 	)& *+ �V.&YZW∗ I\ ���]��Eg
hhi

g
hhh
i

 (16) 

3. Results and Discussion 

Copenhagen dispersion experiments. In these experiments, 

the pollutant was released at an altitude of 115 meters above the 

ground and the concentrations of pollutants were measured at 

ground level at 3 arcs located at a distance of 2000 to 6000 

meters from the continuous elevation point of the source. 

Moreover, the Copenhagen data set provides data on wind and 

turbulence at 10 and 115 meters. The motivation for choosing 

the Copenhagen experiment was the fact that the area in which 

the experiment was conducted was located near the coast of 

resound. [6, 7]. 

Comparison between Observed and calculated, Ref. [20] 

crosswind-integrated concentration  C� �(x, z) at different 

stability, height, Wind Speed and, Distance in Copenhagen, 

Denmark (See in Table 1). Meteorological data (downwind 

distance, Wind speed, stability classes and effective heights, 

emission rate, friction velocity, Monin -Obukhov length) and a 

comparison between our results and the results obtained from 

Inshas, Cairo, Egypt (See in Table 1). 

Explanation of the statistical evaluation of model results (See in 

Table 3). Scatter diagram between observed and calculated  C� �(x, z)for the (A) Copenhagen experiments (B) Inshas, Cairo, 

Egypt. Dashed lines indicate factor of 2 (See in Figure1). 

Comparison between crosswind- normalized integrated 

concentration and downwind distance for the (C) Copenhagen 

experiments (D) Inshas, Cairo, Egypt (See in Figure 2). 

Table 1. Meteorological data (downwind distance, stability classes and effective heights, emission rate, friction velocity, Monin -Obukhov length) Observed and 

calculated Crosswind-integrated concentration  j�k(l, m) nop oqrssrtu pvwo at different stability, height, Wind Speed and, Distance in Copenhagen, Denmark. 

Run no. Stability H (m) u* (m/s) X (m) 
 

x�yz  (10-4 s/m 2) 

Observed Refs.[20] Predicted 

1 A 1980 3.03 1900 6.48 7.705 5.49 

1 A 1980 3.03 3700 2.31 3.488 2.78 

2 B 1920 7.99 2100 5.38 4.620 4.75 

2 C 1920 7.99 4200 2.95 2.307 6.76 

3 A 1120 3.46 1900 8.2 8.411 4.43 

3 D 1120 3.46 3700 6.22 3.221 1.00 

3 E 1120 3.46 5400 4.3 1.614 1.59 

5 C 820 4.08 2100 6.72 6.580 7.62 

5 A 820 5.05 4200 5.84 2.044 1.25 

5 D 820 5.05 6100 4.97 1.004 1.87 

6 B 1300 5.05 2000 3.96 3.752 5.01 

6 A 1300 11.73 4200 2.22 1.704 3.01 

6 A 1300 11.73 5900 1.83 1.005 1.01 

7 A 1850 11.73 2000 6.7 5.917 5.49 

7 A 1850 5.91 4100 3.25 2.893 2.78 

7 B 1850 5.91 5300 2.23 2.124 4.75 

8 C 810 5.91 1900 4.16 7.125 6.76 

8 A 810 7.73 3600 2.02 3.124 4.43 
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Run no. Stability H (m) u* (m/s) X (m) 
 

x�yz  (10-4 s/m 2) 

Observed Refs.[20] Predicted 

8 D 810 7.73 5300 1.52 1.519 1.00 

9 E 2090 7.73 2100 4.58 4.902 1.59 

9 C 2090 8.31 4200 3.11 2.485 7.62 

9 A 2090 8.31 6000 2.59 1.682 1.25 

 
Figure 1. Scatter diagram between observed and calculated j{

k�|, m� for the (A) Copenhagen experiments (B) Inshas, Cairo, Egypt. Dashed lines indicate 

factor of 2. 

 

Figure 2. Comparison between crosswind- normalized integrated concentration and downwind distance for the (A) Copenhagen experiments (B) Inshas, Cairo, 

Egypt. 



 Engineering Mathematics 2021; 5(1): 7-12 11 

 

Table 2. Shows that the meteorological data (downwind distance ‘x’, wind speed ‘u’) stability classes and different effective heights for two height stacks (H)(43m 
and 27m) respectively for different emission rate at Inshas, Egypt. 

Exp. Q x (m) u* (m/s) L (m) H (m) Observed Predicted 

1 28114286 100 0.4 -198 49 4.1 4.033 

2 28700000 110 0.26 -198 48 3.8 3.019 

3 1171429 120 0.27 -192 45 3.8 3.143 

4 12885714 130 0.26 -192 46 3.7 3.223 

5 13471429 140 0.2 -112 45 3.4 3.24 

6 140557143 150 0.26 -112 45 3.2 2.184 

7 27528571 160 0.3 -112 47 3.1 3.204 

8 28524286 170 0.4 -82 46 3.0 2.708 

9 28260714 180 0.26 -82 47 2.9 1.818 

10 2928571.4 190 0.27 -82 28 2.7 2.310 

11 4100000 200 0.26 -130 28.3 2.4 2.118 

12 1171428.6 300 0.2 -130 30.8 1.4 1.131 

13 2342857.1 400 0.26 -130 30.6 0.5 0.506 

4. Statistical Method 

The statistical indicators in Table 3 are the following [5]. 

Fraction Bias (FB) = �C� − C5��0.5�C� + C5�� 
Normalized Mean Square Error (NMSE) = �C5 − C��^

�C5C��  

Correlation Coefficient (COR) = 1NH ��C5� − C5� × �C�� − C��(σ5σ�
��
��$  

Factor of Two (FAC2) = 0.5 ≤ C5C� ≤ 2.0 

Where C is the quantity analyzed (concentration) and the 

values "o" and "p" represent the observed values and present 

values, respectively. Extra lines in statistical indicators 

indicate averages. The FB statistic indicates whether the 

expected quantity reduces the amount observed or 

overestimates it. The NMSE statistical indicator represents the 

squared error of the expected quantity with respect to the 

observed quantity. The statistical indicator FA2 provides a 

small portion of the data for 0.5≤Cp / C0 ≤2.0 as the nearest 

zero are NMSE, FB and FS and the closest one is R and FA2, 

best results. 

According to Tables 1 and 2 and Figures 1 and 2, the results 

showed a satisfactory agreement between measurements and 

simulations. The values of NMSE and FB are relatively close 

to zero, and COR, FA2 are relatively close to one. 

Table 3. Statistical evaluation of models results. 

Models NMSE FB COR FAC2 

Inshas, Cairo, Egypt 0.21 0.13 0.97 0.96 

Predicted (Copenhagen, Denmark) 0.41 0.14 0.98 0.97 

Ref. [20](Copenhagen, Denmark) 0.18 0.1 0.64 0.95 

5. Conclusion 

The diffusion equation was mathematically derived and we 

compared the results obtained from the conclusion with other 

results, namely the Copenhagen experiment and Egypt Inshas. 

We performed a statistical method to evaluate them, and found 

that the results are within a factor of two, NMSE and FB 

values are relatively close to zero, and COR, FA2 are 

relatively close to one. 
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