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Abstract: The exact distribution of the test statistics in multivariate case is quite complicated in many situations, even when 

the underlying distribution is multivariate normal. This is due to the complex nature of the expression and therefore, there is a 

need to derive the asymptotic expression for the distribution. In this study, the asymptotic distribution of errors of 

misclassification for Edgeworth Series is derived by using Taylor’s expansion. The error of misclassification for the 

conditional probability of misclassification was expanded around the means emanating from populations one and two using 

approximated mean and variance of the errors of misclassification. The distribution of error of misclassification of the 

conditional probability of misclassification for ESD is approximately normal with mean zero and variance one. 

Keywords: Asymptotic Distribution, Probability of Misclassification, Edgeworth Series Distribution, Approximate Mean, 

Approximate Variance 

 

1. Introduction 

Edgeworth Series Distribution (ESD) constitutes an 

expansion which is a series that approximates a probability 

distribution in terms of its cumulants and the Hermite 

polynomials. It relates the probability density function to that 

of a standard normal distribution [14]. The use of ESD is 

expedient because approximations to distribution of sample 

statistics of higher order than 
1

2n
−  is of concern interest in 

asymptotic theory of statistics. An important tool that 

evaluates the refinements is provided for by ESD. Its 

expansions take cognizance of a method of using information 

about a higher order moment to increase accuracy of 

approximation [12]. 

The distribution of the conditional probability of 

misclassification of Edgeworth Series Distribution (ESD) is 

intractable due to the complex nature of the expression [16]. 

It comprises of the normal density function, the cumulative 

normal distribution function and the Chebyshev’s Hermite 

polynomial. In lieu of the aforementioned, the asymptotic 

distribution of the error of misclassification is obtained in 

this study by the Taylor series expansion and the approximate 

mean and variance of the error of misclassification is then 

evaluated. 

The validity of the one-term Edgeworth expansion for the 

multivariate mean of a random sample drawn without 

replacement was shown, under a limiting non-latticeness 

condition on the population [1]. The theorem was then 

applied to deduce the one term expansion for the univariate 

statistics which was expressed in linear and quadratic forms. 

The results were applied to the theory of bootstrap to prove a 

one- term expansion in univariate lattice case. 

A Bayesian Edgeworth expansion by Stein’s identity was 

considered [14]. He derived an expansion for posterior 

distributions by using Stein’s Identity and Hermite 

polynomials as techniques. Two examples were shown where 

the incorporation of the expansion and numerical integration 

produced reasonable approximations when the sample size is 

small. It was observed that there are no guidelines or 

methodologies for how many terms should be included in the 

expansion based on real data. 

Edgeworth series expansion and the saddle point method 

were investigated [13]. This is to estimate the distribution 

function for the standardized mean of independent and 

identically distributed random variables. The saddle point 

method was applied to chance game by simulating the game, 

and then comparing the empirical distribution function with 
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that of saddle point method. The saddle point method gave 

better estimation than the normal approximation at the 

discontinuity points where distribution function has jumps. 

Finite sample approximations for the distribution functions 

of Generalized Empirical Likelihood (GEL) were derived, 

and the analytical results obtained were applied to estimators 

which serve as alternatives to Generalized Method of 

Moment (GMM) [7]. The simulation results for confidence 

interval construction indicated that higher order analytical 

correction work well compared to first order approximations 

and improve inferences in small samples. 

Seven asymptotic error rate expansions for the sample 

linear discriminant function with the aim of determining how 

well the assignment rules performed by Ekezie and Onyeagu 

[4]. They considered the following asymptotic expansions 

using binary variables: Deev’s asymptotic expansion, Efron’s 

asymptotic expansion, Raudy’s asymptotic expansion, 

Okamato’s asymptotic expansion, Sayre’s asymptotic 

expansion and Kharin’s asymptotic expansion. Each of the 

asymptotic expansions was evaluated at 225 configurations 

of n, r, and d; where n is sample size, r is the number of 

variables and 2 1

( )
0, 1,2,... ;

j
j j ij j

i

n x
d P P j r P S

n
= − ≥ = =∑  

and jS  is the set of all patterns X with 1.jX =  At each of the 

225 configurations, the asymptotic expansion that has 

minimum variance is declared the best asymptotic expansion. 

Simulation results showed that the best in terms of minimum 

variance was Anderson’s expansion. The expected value of 

expansion was reasonably good for both small and large 

sample sizes. 

Edgeworth expansion up to orders 4 and 6 was used to 

model convolutional noise probability density function. An 

appropriate Lagrangean multiplier was derived to obtain new 

closed form approximated expressions for the conditional 

expectation and Mean Square Error (MSE) as a by product. 

Simulation results did not show any equalization 

improvement on Edgeworth expansion up to order 4 when 

using optimal Lagrangean multiplier over a non-optimal set 

[6]. 

The derivation of the validity of Edgeworth expansions for 

realized volatility estimator was justified, and a new optimal 

non-lattice distribution to ensure second order correctness of 

bootstrap was later proposed [15]. The Monte not Carlo 

simulations showed that the intervals based on the Edgeworth 

correction, improved the finite sample properties relative to 

the conventional intervals based on the normal 

approximation. 

Asymptotic expansions for the Stirling of the first type 

were generated and also in the generalized form of Ewens or 

Karamata- Stirling distribution [18]. On the basis of the 

expansions, they developed some new results on the 

asymptotic properties of the mode and the maximum of the 

Stirling numbers and Ewens distribution. They concluded by 

proving that the mode is the nearest integer to na  for a set of 

n’s of asymptotic density. 

Edgeworth expansions of statistic based on the distribution 

of random variable on extreme spacing statistics was studied 

by [11]. A random variable Rn is an extreme spacing statistic 

when ( ) ( ){ }( ) 1 1 ,n nf x x xα β= ≤ + ≤  where 1 (A) is an 

indicator function, nα  and nβ  are constants. The 

distribution of the extreme spacing statistics was 

approximated by two well known Edgeworth expansions 

denoted by:  

( ) ( ) ( ) ( ) ( )410* 2 3 5 3( ) 1 1082 3 8 10 15
297

n
F x x x x x x x x xn

n
φ

−   
 = Φ − − + − + − +     

 

And 

( ) ( ) ( )
( ) ( )1001 373 5 3

3 10 151~ 5000 48000589 8292 12( ) 1
15000 1250 8553 521 3

2500 20000

x x x x x

F x x x n x nn

x x

φ

    − + − +   −     − = Φ − − − +   
     + −      

 

 proposed by [3] and [5] respectively for different sample 

sizes. The symbols ( )xΦ  and ( )xφ  represent standard 

normal distribution and normal density function respectively. 

For the purpose of comparison, the values of the two 

expansions were simulated in the region 3,x ≤  and it was 

observed that 
~

( )nF x  performed better than *(nF x ). 

Although a lot of work has been done using Edgeworth 

Series expansion, the main objective of this research work is 

anchored on the derivation of the asymptotic distribution of 

probabilities of misclassification for Edgeworth Series 

Distribution. 

2. Probability Density Function of 

Edgeworth Series Distribution (ESD) 

Let F (x) be the distribution to be approximated, { }nk  its 

cumulants, kγ  the cumulants of a standard normal distribution 

function and D the differential operator with respect to x. Also, 

let Φ  and φ  be the standard normal distribution and standard 

normal density function respectively. Then 
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F (x)=exp ( ) ( )
( )

1
n!

n

n n x

n

D
k γ

∞

=

−
− Φ∑                  (1) 

This is identical with the expansions in Hermite orthogonal 

function for a probability density function 

( ) ( )
0

(x)k n

n

P x c H xφ
∞

=

=∑                           (2) 

where ( )n
H  are Hermite polynomials and 

( ) ( ) ( )1

!
k n

C P x H x dx
k

∞

−∞
= ∫                       (3) 

By considering the standardized sum of n independent and 

identically distributed random variables, Edgeworth Series is 

obtained by collecting terms in equation (1) according to the 

power of n [8]. 

Let 1, 2, ..., nX X X  be independent and identically 

distributed random variables with mean 0θ µ=  and finite 

variance 2σ . If ɵ nθ  is constructed from a sample of size n 

and ɵ

1

2
0( )nn θ θ

−
−  is asymptotically and normally distributed, 

then Edgeworth Series expansions are developed as 

approximations to distribution of estimates �
nθ  of unknown 

quantities 0θ . Thus the distribution functions of 

ɵ

1

2
0( )nn θ θ

−
−  is expanded as a power series in

1

2n
−  so that 

ɵ( ) 1

2

1

2
0

2
1( ) ( ) ( ) ... n ( ) ( ) ...

j
n

j

n
P x x x x P x xn P

θ θ
φ φ

σ
− −

+

 
 −
 ≤ = Φ + + +
 
 
 

                                      (4) 

where ( )xφ = ( )
2

2
1

1 222

x

e σσ π
−−−  is the standard normal 

density function and ( )xΦ = ( )

x

x duφ
−∞
∫  is the standard normal 

distribution function Eq. (4) is the Edgeworth Series 

expansion. The functions jP  are polynomials with 

coefficients depending on cumulants of ɵ
0nθ θ− . In 

particular, jP  is a polynomial of degree at 3j -1. 

Suppose , 1,2, 1,2, ,ij iX i j n= = …  denote two 

independent random samples from populations , 1, 2i iπ =  

respectively. The observations ijX  emanate from the 

common distribution defined by the density function 

3 3( ) 1 , 1,2
6

i
i

x
f x D x i

λ µφ
σ

  − = − − ∞ < < ∞ =       
  (5) 

The parameter 3 , ( 1, 2)i iλ µ =  satisfies the conditions: 

3 , iλ µ−∞ < < ∞ − ∞ < < ∞  and 0σ > , where D denotes the 

differential operator
d

dx
, 

( ) ( )
1
2

2

2

2
exp

2

ixx i µπ
σ σ

µ
φ σ

−  − − 
 = 
    

−
 

and 3λ  is the skewness factor [2]. 

3. Methodology 

3.1. Derivation of Asymptotic Distribution of Edgeworth 

Series Distribution (ESD) 

The conditional probability of misclassification is a 

function of 
1 2X and X  and the error function can be 

expanded in a Taylor series in two random variables in the 

region of ( ) ( )1 1 2 2,E X E Xµ µ= = . Given that all the nth 

partial derivatives of a function of two variables ( , )f X Y  are 

continuous in a closed region around ( )0 0,X Y , and if the 

( 1)
st

n +  partial derivatives exist in the open region around 

( )0 0,X Y , then 

( ) ( ) ( ) ( )

( )

2

0 0 0 0 0 0 0 0

0 0

1
, , , ,

2!

1
,

!

n

n

f X p Y q f X Y p q f X Y p q f X Y
X Y X Y

p q f X Y G
n X Y

∂ ∂ ∂ ∂   + + = + + + +   ∂ ∂ ∂ ∂   

∂ ∂ + + + + ∂ ∂ 
…

                     (6) 

where nG  is the remainder after n terms and is given by 
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( )
1

0 0

1
, , 0 1

( 1)!

n

nG p q f X p Y q
n X Y

θ θ θ
+∂ ∂ = + + + < < + ∂ ∂ 

                                          (7) 

Let 1α � ,R f 
   and �

2 ,R fα  
   be the respective conditional probability of misclassification when an observation X from 

each of the populations 1π  and 2π and is misclassified. 

From above, 1
ˆ ,R fα  

   is a function of 1 2andX X , we set  

( )1 21 12
ˆ , ,R f e X Xα   =   

and 

( )1 22 21
ˆ , ,R f e X Xα   =  . 

The expansion of ( )1 212 ,e X X  around ( )1 2,µ µ  is given by 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 2 1 2 112 12 1 2 1 2 1 2 12 1
1 2

2

1 2 1 21 2 1 2 12
1 2

1 2 1 21 1 1 2 12
1 2

, ,

1
, , , ,

2!

1
, , ,

!

n

n

e X X e X X e X
x x

X X e X X
x x

X X e X X G
n x x

µ µ µ µ µ µ µ

µ µ µ µ

µ µ µ µ

 ∂ ∂= − + − + − ∂ ∂ 

 ∂ ∂+ − + − ∂ ∂ 

 ∂ ∂+ − + − + ∂ ∂ 

…                                 (8) 

While we consider the case when 1 2 ,X X<  

( ) 1 2 1 2231
1 212 2

2 2
,

2 26

X X X X
e X X D

λµ µφ φ
σ σσ

   − − + −= +   
     

                                               (9) 

The partial derivatives of equation (9) with respect to 1 2, XX  are given as 

( ) 1 21
1 212

1

1 233 1

3

21
,

2 2

2
.

212

X X
e X X

X

X X
D

µφ
σ σ

λ µφ
σσ

 − −∂   = −    ∂  

 + −
+   

 

                                                     (10) 

( )
2

1 2 1 21 1
1 212 2

1

1 243 1

4

2 21
,

2 24

2
.

224

X X X X
e X X

X

X X
D

µ µφ
σ σσ

λ µφ
σσ

   − − − −∂   = −        ∂    

 + −
+   

 

                                          (11) 

( )
2

1 2 1 21 1
1 212 2

1 2

1 243 1

4

2 21
,

2 24

2
.

224

X X X X
e X X

X X

X X
D

µ µφ
σ σσ

λ µφ
σσ

   − − − −∂   = −        ∂ ∂    

 + −
+   

 

                                  (12) 

It should be noted that at point ( )1 2,µ µ , certain equalities hold [i.e. Eq. (11) equals to Eq. (12)]. See Eq. (20) and [9]. 

From Eqs. (9) - (11), we expand the terms involving 2 3,D D  and 4D in Chebyshev’s-Hermite polynomials to get 
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1 2 1 2 1 22 1 1 12 2 2
1

2 2 2

X X X X X X
D

µ µ µφ
σ σ σ

       + − + − + − = − ⋅                   

                                        (13) 

3

1 2 1 2 1 2 1 23 1 1 1 12 2 2 2
3

2 2 2 2

X X X X X X X X
D

µ µ µ µφ φ
σ σ σ σ

         + − + − + − + − = − +                         

                    (14) 

4 2

1 2 1 2 1 2 1 24 1 1 1 12 2 2 2
6 3

2 2 2 2

X X X X X X X X
D

µ µ µ µφ φ
σ σ σ σ

        + − + − + − + − = − +        
                

                    (15) 

Setting 
( )2 1

2

µ µ
α

σ
−

=  and evaluating Eqs. (9), (10) and (11), we have 

( )
1 2

23
1 212 12

,
, ( ) 1 ( )

6
e X X m

µ µ

λφ α α φ α
σ

 = − + − =                                                 (16) 

( )
1 2

33
1 212 23

1 ,

1
, ( ) 3 ( )

2 12
e X X m

X µ µ

λφ α α α φ α
σ σ

∂    = − − + − =  ∂
                                      (17) 

( )
1 2

2
4 23

1 212 34
1 ,

1
, ( ) 6 3 ( )

4 24
e X X m

X µ µ

λα φ α α α φ α
σ σ

∂    = − + − + =  ∂
                               (18) 

( )
2

4 23
1 212 34

1 2

1
, ( ) 6 3 ( )

4 24
e X X m

X X

λα α α α φ α
σ σ

∂    = Φ − + − + =  ∂
                                (19) 

The following equalities hold at point ( )1 2,µ µ : 

( ) ( )

( ) ( ) ( )

( )

1 2 1 212 12
1 2

2 2 2

1 2 1 2 1 212 12 12

1 2 1 2

2

1 212

2 1

, , ,

, , ,

,

e X X e X X
XX

e X X e X X e X X

X X X X

e X X

X X

∂ ∂   =
   ∂∂

∂ ∂ ∂     = =
     ∂ ∂ ∂ ∂

∂  =
 ∂ ∂

                                (20) 

If we neglect the terms made up of partial derivatives of order higher than the second, we have, 

( ) ( ) ( )
( ) ( )( ) ( )

1 2 1 212 1 1 2 2

2 2

1 1 2 21 1 2 2 3 2

,

1
2

2!

e X X m X X m

X X X X m G

µ µ

µ µ µ µ

 = + − + −
 

 + − + − − + − +  

                           (21) 

The expansion of ( )1 212 ,e X X  is obtained in a similar form when 
1 2X X≥  as 

( ) ( ) ( )
( ) ( ) ( ) ( )

' '
1 2 1 212 1 1 2 2

2 2
' '

1 1 2 21 1 2 2 3 2

,

1
2

2!

e X X m X X m

X X X X m G

µ µ

µ µ µ µ

 = + − + −
 

 + − + − − + − +  

                           (22) 

where 
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3' 2
1 2

( ) 1 ( )
6

m
λ

φ α α φ α
σ

 = − − 
                                                                      (23) 

' 33
2 2

1
( ) 3 ( )

2 12
m

λφ α α α φ α
σ σ

 = − −                                                                 (24) 

' 4 23
3 2 2

1
( ) 6 3 ( ).

4 24
m

λα φ α α α φ α
σ σ

 = − − +                                                           (25) 

3.2. Approximate Mean and Variance of Conditional Probability of Misclassification 

We obtain the approximate mean and variance of the conditional probability of misclassification from Eqs. (21) and (22). 

Let ( , )X Y be a two-dimensional random variable. 

Suppose ( ) , ( )x yE X E Yµ µ= = and 
2 2V( ) , ( )x yX V Yσ σ= = . 

Set ( , )Z B X Y= and assume that at point ( ), ,x yµ µ  various derivatives of B exist so that 

( )
2 2

2

2 2
( ) ,x y y

B B
E Z B

X Y
µ µ ∂ ∂= + + ∂

∂ ∂
                                                                (26) 

2 2
2 2( ) x y

B H
V Z

X Y
σ σ∂ ∂   = +   ∂ ∂   

                                                                     (27) 

where all partial derivatives are evaluated at the point ( ),x yµ µ . See [2] 

( ) ( )
( ) ( )

1 21 2

1 2 1 2 .

Let F X X

X X

µ µ

µ µ

= − + −

= + − +
                                                                    (28) 

Also, let 1 2X X< , so that from Eq. (22), 

���������, ������ = 
� +
�� + 

�
� + ��                                                                (29) 

where  

' 2
3

2

m
m =  

( ) ( ) ( )

2

1 2

2 4 2 2

2 2
2 2 2 2

4

1 2 1 2

1 1
( ) 0, ( )

3

E F V F
n n

V F E F E F

n n n n

σ

σ σ σ σσ

  = = +   

= − 

   
= + − +   
       

                                                         (30) 

See [10]. 

The approximate mean of ( )1 212 ,e X X  is given by 

( ) ( )' 2
1 212 1 2 3

2 2
'

1 3
1 2

, ( )E e X X m m E F m E F

m m
n n

σ σ

  ≈ + +
 

 
= + + 

  

                                                             (31) 
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and the approximate variance of ( )1 212 ,e X X  is given by 

( ) ( ) ( )

( ) ( ) ( ) ( )

2
2

2 2 ' 2 2
1 212 2 3

1 2

' 2 2
2 3

1 2

2
2 2 ' 2 ' 3
2 3 2 3

2 2
'

2 3
1 2

1 1
,

1 1
2

2

2 ( ).

V e X X m E F m E F
n n

m m E F F
n n

m E F m V F m m E F

m m E F
n n

σ

σ

σ σ

    ≈ + − +       

   
+ − +        

= + +

 
− + 

  

                                               (32) 

Using the results in Eq. (30), we have 

( ) ( )
22 2 2

2 ' 4
1 212 2 3

1 2 1 2

2

4 '
1 3 3 2 2

1 2 1 2

1 1
, 3

1 1 1 1
2

V e X X m m
n n n n

m m
n n n n

σ σ σ

σ λ

       ≈ + + +            

  
− + + +    

   

                                                     (33) 

( )
22 2 2

2 ' 4
2 3

1 2 1 2

'
1 22 3 3 2 2

1 2

1 1
2

1 1
2 ,

m m
n n n n

m m X X
n n

σ σ σ

λ

   
≈ + + +   

    

 
+ + < 

  

                                                                     (34) 

Hence, 

( ) ' 2
1 2 1 212 1 3

1 2

'' '' 2
1 21 3

1 2

1 1
, ,

1 1
,

E e X X m m X X
n n

m m X X
n n

σ

σ

   ≈ + + <    

 
≈ + + ≥ 

 

                                                           (35) 

where 
'

'' 3
3

2

m
m = , and 

( ) ( )

( )

22 2 2
2 ' 4

1 212 2 3
1 2 1 2

'
1 22 3 3 2 2

1 2

22 22
'' 2 4

2 3
1 2 1 2

' ''
1 22 3 3 2 2

1 2

1 1
,

1 1
2 ,

1 1
( ) 2

1 1
2 , .

V e X X m m
n n n n

m m X X
n n

m m
n n n n

m m X X
n n

σ σ σ

λ

σ σ σ

λ

     ≈ + + +        

 
+ + < 

  

   
′≈ + + +    

  

 
+ + ≥ 

  

                                                 (36) 

The asymptotic distribution of 
1 212 ( , )e X X  is considered since the problem is symmetric with respect to the error. 

As 1n  and 2n  become large, the distribution of 
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1 2 1 2

1 2

12 12

1
2

12

( , ) ( { , })

[ { ( , )}]

e X X E e X X
y

V e X X

−
=  

is approximately normal with mean 0 and variance 1. 

Ignoring terms of order 2 2
1 21 2

1 1 1
, and

n nn n
 in the mean- variance approximation [see Eqs. (32) and (33)], we have 

( ) ( )

( )

1 2

1 2

2 2 2 22 2
' '

12 1 3 1 3
1 2 1 2

12 1 1
2 22 2 2 2

2 2
2 2

1 2 1 2

2 22
'

1 3
1 2

2
2
2

1

( , ) [ ] [ ]

Pr{ ( , ) } Pr

[ ]

e X X k k u k k
n n n n

e X X u

k k
n n n n

u k k
n n

k
n

σ σ σ σ

σ σ σ σ

σ σ

σ

 
    − + + − + +       

    < = < 
       
 + +                    

 
− + +  

 = Φ
21

1
22

2

when X X

n

σ

 
 
 
  <
 

   +    
    

                   (37) 

and 

( )

( )
1 2

2 22
' ''
1 3

1 2

12 1
22 22

'
3

1 2

Pr{ ( , ) }

u k k
n n

e X X u

k
n n

σ σ

σ σ

 
   − + +    
    < = Φ

 
   +    
    

when 21X X≥                                (38) 

4. Conclusion 

The asymptotic distribution of probabilities of 

misclassification for Edgeworth Series Distribution using 

Taylor’s series expansion has been derived in this study. The 

conditional probability of misclassification as a function of 

1 2X and X  has been expanded in a Taylor series in two 

random variables in the region of ( ) ( )1 1 2 2,E X E Xµ µ= = . 

The approximate mean and variance of the conditional 

probabilities of misclassification were subsequently 

evaluated. It was established that as 1n  and 2n  become large, 

the distribution of 
12 12

1
2

12

( )

[ { }]

e E e

V e

−
 is approximately normal with 

mean 0 and variance unity. 
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