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Abstract: In this paper, we introduce the algebraic structure of Z, (Z,+uZ,) (Z,+uZ,+u’Z,) -additive codes and Z, (Z,+uZ,)
(Z+uZy+u’Z,y) -additive cyclic codes. Compared to the Z,Z,Zg-additive codes, the Gray image of any Z, (Z,+uZ,)
(Zz+uZZ+uZZZ) -linear code will always be a linear binary code. Therefore, we consider the Z, (Z,+uZ,) (Zz+uZZ+u222) -
additive cyclic codes as a (Zy+uZ,+u’Z,) [x] -submodule of Z,"x(Z,+uZ,)’x(Z,+uZ,+u’Z,)". We give the definition of Z,
(Zy+uZ,y) (Zy+uZ,+u’Z,y) -additive codes with generator matrices and parity-check matrices. Furthermore, we give the
fundamental result on considering their additive cyclic codes with generator polynomials and spanning sets.
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1. Introduction

Codes over rings were introduced in early 1970s. However
this research topic had been widely and really concerned
after a milestone paper written by Hammons et al. in 1994,
which shown that some special classes of non-linear binary
codes could be obtained as Gray images of linear codes over
Z, [1]. Since then, several families of codes over finite rings
have been studied by many scientists [2-4].

In 1973, Delsarte defined additive codes in terms of
association schemes as the subgroups of the underlying
abelian group [5]. In 2010, Borges et al. brought a new
perspective to additive codes over rings, introducing Z274-
additive codes [6]. Under binary Hamming scheme, the
underlying group of order 2% isomorphic to 22”><Z4ﬂ ,
where @ and [ are nonnegative integers. The subgroups of
underlying group are called Z,Z, -additive codes. Therefore,
a Z,Z, -additive code C is defined to be a subgroup of
Z,"xz,f |, where a+2B8=n . If a=0,
quaternary linear codes over Z, and if B=0, C are
equivalent to binary linear codes. In 2014, Abualrub et al.
studied Z,Z, -additive cyclic codes and Z, +uZ, -linear
cyclic codes [7]. In 2015, Aydogdu et al. studied the
Z,Z,[u] -additive codes [8]. In 2016, Borges et al.
researched the generator polynomials and dual codes of

then C are

Z,Z, -additive codes [9]. One year later, Aydogdu et al.
studied the Z,Z,Zg -cyclic codes [10], in which they
introduced that if @ , B and @ are odd integers, Z,Z,Zg -
cyclic codes is a Zg -submodule of
Zy 1 (x* =1)xZ, | (x# =1)x Zg / (x 1) and give the minimal
generating set for Z,Z,Z; -cyclic code. In 2018, the binary
images of Z,Z,-additive cyclic codes have been done also

by Borges et al. [11]. Further, Ismail et al. discussed the
structure properties of Z27Z2s-additive cyclic codes [12].
In this paper, we will study some structure of

Z,(Zy +uZy)(Z, +uZ, +u’Z,) -additive
including their generator polynomials and spanning sets. The
rest of this paper is organized as follows. In Section 2, some
results on Z,(Z, +uZ,)(Z, +uZ, +uZ,) -additive code are
given, and associate these codes with submodules of
2,7 %(Zy +uZy)P X (2, +uZy +u*Z,)°.
generator matrices and  parity-check  matrices  of
Z,(Zy +uZ,)(Z, +uZ, +u*Z,) -additive codes are given in
this section. In Section 3, the definition
Z,(Z, +uZ,)(Z, +uZ, +u’Z,) -additive cyclic codes and

their generator polynomials and spanning sets are given.
Some examples are given to illustrate the main results
appeared in this paper. Moreover, using the Gray map, some
good binary linear codes can be obtained by

cyclic  codes,

Moreover, the
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Z,(Zy +uZ,)(Z, +uZ, +u*Z,) -additive cyclic codes.

2. Zo(ZytuZ,)(ZytuZy+u’Zy)-Additive
Codes

Zhihui Li: Zy(Zy+uZo)(Zo+uZ,+u’Z,)-Additive Cyclic Codes

Let Z, be the finite field of order 2, and let R be the ring
Z, +uzZ, ={0,L,u,1+u}, where u* =0 mod 2, and let S be
the ring Z, +uZ, +u*Z, = {0,Lu,1 +u,u® 1 +u’ u+u’ 1 +u+u*},

where u? =0 mod 2. Construct the following set

0= 28 x(Z, +uZy)P x(Z, +uZ, +u*Z,)°

={(m,v,w)|mOZ7 vO(Z, +uZ )ﬁ,wD(Z +uZ, +u’Z )‘9
2 2 2 2 2 2

Clearly, this set is closed under usual addition and it
becomes an additive abelian group. Define the following

multiplication for (m,v,w)00 and d S, in order to make
[0 closed under multiplication by elements from S,

2

d Wm,v,w) = (dm modu,dvmodu?, dw)

Since d [{m,v,w)JS , it follows that [1 is a .S -module
with respect to this scalar multiplication.

Definition 1 A non-empty subset C of Z& xRE x5 is
called a Z,RS -additive codes if it is a subgroup of
78 xRE x5

Clearly, C is a binary linear code of length a if =0
and =0, a Z,R -additive code of length (a,f) if 6=0
and a linear code of length @ over S if @ =0 and £=0.
The type of a Z,RS -additive code of block length (a, £3,0)
is defined as follows.

D(m, v, w) = (my,...,my_1,@Vy),

where

m = (mg,my,...,my_ ) IZ5 , v=

W= (Woo Wisees W) 0(Zy +uZ, +u*Z,)°

(6)

Definition 3 The Gray image ®(C)=C of a Z,RS -
additive code C is a binary code of length n =a +25+36
and is called a Z, RS -linear code.

Let F, is the finite field with g elements, a linear code of

length n over F, is a linear subspace of the vector space
F

The generator matrix of linear codes can be formed by the
minimal spanning set of this linear code. Since the minimum
spanning set of the linear codes is not unique, then the
generator matrix of the linear codes is not unique. In this
following, the paper gives the standard form of generator
matrix of Z,RS -additive codes first.

Theorem 1 Let C be a Z,RS -additive code of type
Ca, B,6ky; by heys by ey Kes) Then C is

equivalent to a Z,RS -additive code with the standard form

permutation

matrix.

(1

Definition 2 A Z,RS -additive code C of length (a, 3,6)
Z,RS  -additive of  type
(a,B,6ky; by, kys ks kg k5D, if C s a group isomorphic to
the abelian structure

is called code

75 x RY x 72 x §% x R* x 7J5 3)
From [13, 14], defind @:Z,+uzZ, - Z; by

#0)=(0,0) , g)=(O.1) , gw)=1L1) , gl+u)=(,0)
and @ :Z,+uZ,+u’Z, -~ Z; by @(0)=(0,0,0) ,
pM=0OL) , @w=0,01) , @ld+u)=(0,10) ,
p?)=(11,0) . g+u®)=(1,01) , g+u’)=(111),
o1 +u+u® =(1,0,0).

By the maps ¢ and ¢ , Gray map can be defined by
®: 78 xRPxS% . 7 by:

--aq(vﬂ—l)ag(w(])w-w@(wH—l)) (4)
(Vs V1o sVp) (2, +uZ,y)P 5)
Ly Ay |0 0 wuf [0 0 0 u’T,
0 Sy |Iy, By Byp |0 0 uly ul,
- 0 0 |0 ul uB,| 0 O 0 Ww’Ts | (7)
0 S‘z 0 SOI SOZ 1/(3 AOI AOZ AO3
0 S5 1|0 0 uSy, | 0 uly, udy udy
0 0|0 0 0|0 0 oI, u'dy

where 4'),,5",S"', and S'; are Z, matrices. By, , By, Sy,
S, and By, Sy, T, are R -matrices, T, , T5, Ay, A3,
AyyandT,, Ty, Ay, Ay, A, are S -matrices. Further, the
number of codewords in C is given by:

c|=2% @" 0% B35 @ 0% (8)

Define a  inner for the elements

u,vZ8 xRP x 8 as

product
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i=1 j=a+l k=a+[+1

a a+p a+p+6
uﬁ):uz{ZuiviJ+u ZMJAV/- + Z wv, )

The dual code C" can be defined in usual way with
respect to the inner product.

" ={ung’ x RP x SO |u G = 0 forallu DC} (10)

It is obviously that C'is also a Z, RS -additive code.
Corollary 1 Let C be a Z,RS -additive code of type with
standard form generator matrix (7). Then, the code C" is of
type
(a,B,6,a—ky; B—k| —ky, ky; @ —ky —ky — ks, ks, ky) (11)

3. Z,RS-Additive Cyclic Codes

Cyclic codes are a very significant class of linear codes
because of their good algebraic structures for coding and
decoding [15]. In this section, we study the structural
properties of Z,RS -additive cyclic codes, including their

generator polynomials and minimal spanning sets.
Let J be a standard shift operator on Z§ , RP and S¢.

For any (m,v,w)0Z5 xRPxS% let T be a shift operator
on

7% xRP xS% as 1(m,v,w) = (d(m),d(v),d(w)) (12)

Definition 4 The Z,RS -additive code C of length
n=a+B+68over 0 is said to be a Z,RS -additive cyclic
code if it is invariant under 7 , i.e. for any codeword,

c :(mo,ml,---,ma_l,vo,vl,---,vﬂ_l,wo,wl,---,wg_l)DC (13)

its cyclic shift

T(C):(ma—l’mO""’ma—bvﬁ—lavoa'"aVﬁ—zan—1,W(),"'Wg_2)DC (14)
In Section 2, the paper defined the inner product in
78 xRP x 89,
Lemma 1 If C is a Z,RS -additive cyclic code, then C"

is also a Z,RS -additive cyclic code.
Proof Let C be a Z, RS -additive cyclic code, and

m=(ag. gLy, bgydy.+dg, ) OCT (15)

In the following, it only needs to prove 7(m)OC". Since
mDCD, for

v:(609"'aea—1’g0a'“’gﬁ—lah()ahg—l)DC (16)

it have

mbh= “2(%@0 tetag e,) tulbyg +"'+bﬁ—1g,8—1)

(17)
+dyhy +---+dy_hg_y =0modu’.
Let
[ =lem(a, B,6) (18)
and

Tl_l(v) :(elv":eg—laeoagl:'~~’gﬂ—1ag0ahla~~~ah5—1ah0) =w (19)

Then 7’ =v. Since C is a cyclic code, it follows that

wC . Therefore,

0=wlin

=uP(eay + ey gy tegdg ) tu(giby +oet 8obp-1)

+h1d() + hOdH—l (20)
=1 (eygy o+ eq gy Fu(gebB—1+ +tgp4bs2)
thydg_y ++hgdg_,
=vlt(m).

Hence, r(v)0C , Cc” is also a Z,RS -additive cyclic
code.
Definition 5 Define the set

Z,y[x1/ (x =Dx R[x]/ (x* =1)xS[x]/ (x° =1) by O, g4
For C O ¥ x R? x §? any elenment:
c:(mo,ml,---,ma_l,vo,vl,---,vﬁ_l,wo,wl,---,wg_l)DC,

can be written by the element of L, 54 as follows

e(x) = (my +myx+---+my_ x“ vy +vx +---+vﬁ_1xﬁ_

1
" (21)
wp + Wy +esF w87 = (m(x), v(x), w(x)).

Therefore, it is possible to see that U, 54 0zg x RF x 8.
Define the product [ , for d(x)0S8[x] and
(f (%), g(x),A(x) D04 g 5

d(x) (S (x,)g(x), h(x))

, (22)
=(d(x) f(x)modu,d(x)g(x)modu~,d(x)h(x))

This extended multiplication is also well defined and
Z8xRPxs% is a S[x] -module with respect to this
multiplication.

Lemma 2 Under the definition of [J, O a.p6 18 an S[x]-
module, and any Z,RS -additive cyclic code C corresponds
to an S[x]-submodule of U, 5 4.

In this part, we study S[x]-submodules for [, 5. The

generator and a minimal spanning set of these submodules
are determined. Assume that @, B, and & are odd positive

integers. Since the Z,RS -additive cyclic code C is an S[x]
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-submodule of U, 5, a map can be defined as follows

W:C = S[x]/(x? -1

(23)
(f(x),8(x), h(x)) - h(x)

Clearly, ¢ is an S[x]-module homomorphism with kernel

Ker(@) ={(f (x),g(x),0)0C: f(x) D Z,y[x]/ (x7 1),

(24)
2(x)OR[x]/ (x* -1)}

Since the image (¢/(C) of C is an ideal of S[x]/ (xg -1

and @ is an odd integer, which implies that

(€)= ( p(x) +ug(x) +1r(x) (25)

where 7(x)|q(x)| p(x)| (x% =1)modu>.

From the discussion above, which implies that the
following theorem is got.
Theorem 3 Let C be a Z,RS -additive cyclic code. Then

C can be generated as an R[x] -submodule of U, 5, with

this form

C= < (f(x)s 09 0)9 (fl (X), 81 (x) + ua (x)’ 0)’

) (26)
(/2(x), 2(x), p(x) +ug(x) +u’r(x)) ).
Proof Let I be a set, and
I={(f(x),g(x),0)0Z,[x]/ (x* =1)x R[x]/ (x* ~1): 27)

(f (x),g(x),0) Uker()

Clearly, 1 is an R[x]
Zz[x]/<x”—1 )xR[x]/<xﬁ—1> . Hence, I is a Z,RS -

-submodule of

additive cyclic code. From [7],

1= (f00,00,(f;(x), & (x) +uay (x) ), (28)

where f (x)|<xa—l> and g,(x)+ua;(x) is a polynomial

B _
over R with a,(x)] gl(x)|<x/’ —1> and £ £ (0.
a;(x)
Let (¢;(x),c,(x),0)Oker(¢) . Then that have
((x),cy ()01 29)

={(f(x),0),(f;(x), g (x) +ua (x)))

Therefore, for polynomials m 0Z,[x]/ <xa —1> and

m, DR[x]/<xB —1> , it get

(¢1(x), €5 (x)) = my T(f (x),0) +my LI, (x), g1 (x) +uay (x)) (30)

So

ker@) = ((f(x),0,0),(; (x), g (x) +ua (x),0) ~ (31)

is a submodule of C . By the first isomorphism theorem of
modules, there are C/ker({/) D< p(x)+ug(x)+ uzr(x)> .

Let (f,(x),g,(x), p(x) +ug(x) +u’r(x)) O C such that

Y f2(x), 25(%), p(x) +ug(x) +u’r(x))

(32)
= p(x) +ug(x) +u’r(x)
Then
C= < (f(x)’()?())?(fl (X), 81 (x)+ual (x)’ 0)’ (33)
(f>(x), & (x), p(x) +ug(x) +1’r(x)) ).
Lemma 3 Let
C=( (f(x),0,0),(f;(x), g (x) +ua (x),0), G
(f5(x), 82 (x), p(x) +ug(x) +u’r(x)) )
be a Z,RS -additive cyclic code. Then
deg f(x) <deg f(x) (3%5)
and deg f,(x) <deg f(x) and
deg g,(x) <degg,(x) (36)

Proof Let deg f,(x)=deg f(x) . Since f(x) is monic, it
can apply division algorithm, i.e. there exist polynomials
q'(x) and r'(x) over Z, such that

H(x) = f(0)g'(x) +r'(x) (37

where 7'(x) =0 or 0<degr'(x) <deg f(x), which implies
that

{( (f(2),0,0),(f;(x). g (x) +ua(x),0),

(f>(x), & (x), p(x) +uq(x) +1’r(x)) )

=( (f(2),0,0),(f (x)q'(x) +r'(x), & (x) +ua, (x),0),

(/> (x), & (x), p(x) +ug(x) +1’r(x)) )

=( (f(x),0,0),(r'(x), & (x) +uay(x),0),

(f2(x), 85 (%), p(x) +ug(x) +u*r(x)) ).

(38)

Hence we may assume that deg f,(x)<degf(x) .

deg f, (x) < deg /(x) and
deg g, (x) <deg g,(x) also can be proved.

Similarly the

Lemma 4 Let

C=( (f(x),0,0),(f;(x), g (x)+ua(x),0),

) (39)
(300,22 (0, p() +g(x) +ur(x) ).

be a Z,RS -additive cyclic code. Then



Engineering Mathematics 2019; 3(2): 30-39 34

P -1
S| Ji(x) (40)
a;(x)
Proof It is well know that
W(C) ={ p(x) +ug(x) +1*r(x) (1)
Hence,
xP -1
‘/{ (x), g (x) +ua; (x), O)J
a,(x)

N

=y [ Jfl(x) 5[ )(gl(X)*“ual(X)),O) (42)
a(x) a;(x)

=0

where ( f;(x), g (x) +ua, (x),0)0C , which implies that

P P
Ok 43
{ - )jm )= [ - )jfl(x) alw) @
Therefore,
P -1
a0 (x) (44)
Lemma 5 Let
C :< (f(x)90’ 0)’(fl (x)9 81 (x) +ua1 (x)90)9 (45)
(/>(x), & (x), p(x) +ug(x) +1°r(x)) ).
be a Z,RS -additive cyclic code. Then have
x? -1
(g1(x) +ua (X))I 9 = g,(x)modu’ (46)
0 -
SO k() f; () + > fz (x))modu (47)
Where
xe -1 2
k(x)(g;(x) +ua (x)) = g, (x)modu (43)
r(x)
Proof (i) Consider
( ® (x), g5 (x), p(x) +ug(x) +u ”(x))]
[ [ ]fz( ), [ ]gz(m m] (49)
r(x)
Since

piEa! -1 Ok (50)
( ) ] (=7 a0 Dker(y)
then
N
(€ () +uay () | —— o) gz(x)modu (51)
(ii) Let
xf -1
(g1(x) +uaq (X))l D g, (x)modu’ (52)
Then there exists k(x) .S such that
x?-1
k(x)(g(x) +ua,(x)) = D ——gy(x)modu’  (53)
Having
k(x) LI f, (x), & (x) +uay (x),0) (54)
= (k(x) £, (%), k(x)(g; (x) +uay (x),0)) IC
Therefore,
(k(x) fi(x) +k (X)(gl (x) +ua (x)),0)
& _1fz( s )1 (1,0 (55)
£
_(k(x)fl(x)+ ) fz(x) 0,0) Uker(y) U C.
Hence,

f (x)l(k(X)fl(x)+ o) fz(X))mOdu (56)

From the discussion above, the following theorem can be
directly obtained.
Theorem 4 Let C be a Z,RS -additive cyclic code. Then,

C=((f(x),0,0)), f(x) | (x* =1)ymodu (57)

or

C =(f;(x), & () +ua, (x),0) , a(x)] g (x)](x* =1)modu
and

(7 1)\( )fl(x) (58)
4

a(x)

or

C={ (f(x),0,0),(f;(x), & (x) +ua(x),0),

(59)
(f5(x), g5 (x), p(x) +ug(x) +u’r(x)) ),

where
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r(x) | q(x)| p(x)| (x° =1)mod v (60)
deg g, (x) <degg;(x) (61)

and

¥ -1

(g1(x) +ua (x)) \ ) 2,(x)modu’ (62)
deg f1(x) <deg f(x),deg f5(x) <deg f(x) (63)

and
f] (—)ﬁ (x)modu (64)

a,(x)
F@) | (k(x) f;(x)+ ()fz(x))m()d” (65)
where
xe _1 2

k(x) (g (x)+a(x)) = g, (x)modu (66)

r(x)

In the following, get the main result on the minimum
generating sets of Z,RS -additive cyclic codes.

Theorem 5 Let

C=( (/(2,0,0),(f;(x), (x) +ua,(x),0),

(67)
(f2(x), g5 (), p(x) +ug(x) +u’r(x)) ).

Let,

(68)

deg(;?;)c))—l
p= U b nm i tethy fut ),
i=0
deg(r' x))—l
Dg = {xl E(/p(x)fz(X)Jp( )22 (x).uly ( )’(’f))}

deg g, (x) =t,, degp(x) =t,
() ()=

l (x)q(x)=x9—1 .

degf(x) =t,

-
—_
=
SN—

<

—_
=

~
1

D:DIUDZUD3UD4UD5UD6 (69)

is a minimal spanning set for C , and
|C| - 2a—tl E’B_tz Bg—t3 [Idegalv(x) Edegqv(x).zdegrv(x) (70)

Proof Let c¢(x) be a any codeword in C . There exist some
polynomials e;(x),e,(x),e;(x) JS[x], such that c(x) can be
represented by

[(f 00)+e2 [(fl x),gl(x)+ual(x),0) 1)
+e3 [(fz +uq( )+u2r(x))
If
dege, (x) <deg/, (x) , then
)0 £ (x).0,0)0(Dy) (72)
Otherwise, have
e (x) =1 (x)q (x) +7 (x) (73)
where 7 (x) =0 or degr(x) <degl/,(x). Hence,
,0,0)=1
(L ().0.0) =1, (o () +r () (x).00)
- rl [(f a a )
If dege, (x) <deg/, (x) , then
x) (£ (x). &1 (x) +ua, (x),0) 0(D,) (75)
Otherwise, have
e, (x) =1y (x)q2 (x) +r (x) (76)
where 7,(x) =0or degr, (x) =deg Iy, (x) . Hence,
& (x) 0 (x)- & (x) +uay (). 0)
lgl( (x)+r2 qfl +ua1( ) 0)
lg ( x) I](f1 +ua1 (x) 0) 77)
+r2 x I:(f1 +ua1( ) O)
—qz |:(Igl ual(x) )
+r, (x ( D(fl +ua1 )
where r, (x) E(fl (x) +ua1 ,O) t(D
For
x) E(lgl (x)fl (x) [ (x)ual (x),O) (78)

if degg,(x) <dega'|(x), then

x) E(lgl (x)fl (x) ul

(x)a (x).0)0(Dy)  (79)
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Otherwise, have Here,
q, (x) = (x) ai (x) +n (x) (80) r (x) E(lgl (x)f1 ()c),ulg1 (x) a (x),O) |:|<D4> (82)
where r;(x) =0 or degr(x) <dega'|(x) . Hence, and since
E(lgl (%) (x) s (x) a ().0) /) ’;i;)lfl(x) (83)
( x)+r )qlgl x) ulgl ) ( ),0) @1)
= q3 ql (x)f 0 0)
+r3 E( x)f1 )al( ),0)
x# -1
E(lgl Silx)a ) (X)E[al(x)f( )-0 0]D<D1> (84)
Finally, for e, (x)0{ £, (x), (x)+ug (x) +2r(x)) . if Y 2t (e (Ve (s
dege;(x) <degl/,(x), then 3( ) lp( )q4( ) 4( ) (50
where 7,(x) =0 or degr (x) <degl/,(x).
E(fz (x) +uaq (x )+u2r(x))D<D1> (85) Hence,
Otherwise,
s (x) (/2 (x) 22 (%), p () +ug (x) +ur ()
=1y (x)a (%) + 72 (x) E{ 12 ()2 (x). p () +uq () +0r ()
(87)
= 0 (¥) {0y (x) 12 (%) () 22 ()., () () #0°, () ()
41y (x) {2 (%) 2 (). p () g () +0r ()
Here,
7 (x) E(fz (x) 2 (x),p(x) +uq(x) +u2r(x)) D<D3> (88)
For
02 () E{1y () 15 () 1y () &2 ()t () () #° () () (89)
if degq,(x) <deggq'(x) , then
al (x).ud, (x) g (x) +2, (x)r (x)) O{ D) (90)
Otherwise, have
94 () = ¢ (x) g5 (x) +15 (x) 1)

where r; (x) =0 or degr; (x) <degq (x) .

Hence,
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() ey () 15 (). (x) 22 ().t (x) g (x) +26°, () ()
( )as (x)
+r5 ql (x g2 ( ) ul, (x)q(x) +uzlp (x)r(x)) 92)
:q5 x qlp x 2 x oy x g2 (x),uzlp (x)r(x))
15 () {1, () £ (). by (x) 22 (). () () 0%, (x) ()
Here, In this following, consider the
75 (5) {0y ()5 () fp () & (). (x) g () #2r°, (3) () O( D). .
,0 97
For q5(x)qlp(x)fz(x),lp(x)gz(x),uzlp(x)r(x)) if g6 (x)* ( () fz( ) () £,(x),0) o7)
deg(q5 (x))(deg(r' (x)) , then From lemma 5, there exists &(x) ] S[x]such that
qs (X)E(lp (x)fz(x)’lp (x) & (x)’”zlp (x)r(x))D<D6> (93) k(x)(g, (x) +ua, (x)) = x"(—)l 2, (x)modu’ 98)
r(x
Otherwise
‘ and
a5 ()= (s)as (=) 1 (+ o4 -
k i d 99
where 7 (x) =0 or degrg (x) <degr (x). SENEDA * r(x) S Pmodu %)
Hence, Therefore, there is A(x) such that
'(X)qa(X)+”6(X) 0, (X)fz(X)Jp ()2 (X),u’L, (x)r(x)) o
-1 F()A(x) = k(x)fl(x)+ fz (x) (100)
=qs(x)* ( ) fz( )> o £,(x),0) (95)
4150 * (1, () (0,1, ()5 (), (2)r () which implies that,
6 _
Have A0 f@AR k@A o)
76 (0)* (1, (0) o ()1, (g2 (0), 471, (1)r(x)) O(Ds ) (96).
Hence,
-1
ge(X)* ( () fz( ) (x) 8,(x),0)
=46 (X)* (f ()A(x) =k(x) /1 (x), k(x)(g (x) +ua (x),0)) (102)
= q6(D)AX)(f(x),0,0) + g ()k(x)( /1 (x), &1 (x) +ua, (x),0)
0(D,UD,).
Example 1 Let C be a Z,RS -additive cyclic code in
s S (x)=x-1=1,(x) =1,
generated Z,[x]/(x —1)XR[x]/(x —=1)xS[x]/(x” —1) by 5 e 3
P, (x)=x" =1=1,(x) =x" +x” +x" +1,
(/00,00 (fi (). 1 (x) +uay (x),0), S ()= 5~ 15 1 (1) = -1,
(00, 822 p(@) +uq(x) +1*r(x)) ), @l ()= x=1= 1, () =1,
where f(x)=1+x , fi(x)=/f(x)=1, fi(x)=/f(x)=1, Hence, from Theorem 3, the generator matrix for C is as

g @) =1, a(x)=1, p(x)=1+x, g(x)=1, r(x)=1. In this  follows
following,



1
1

1

u

1
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1+u+u? 1
0 l+u+u

0 0

0 0

0 0

u+u’ 0

Furthermore, the ®(C) is a [18, 6, 3] linear binary code.

There is a table about some examples. The binary codes
with these parameter are not nice codes. But the binary codes

0 0 0

1 0 0

1+u+u? 1 0

0 1+u+u? 1

0 0 0
u+u’ u+u’ u+u’

which are marked with * are only about 1 less in minimum
distance than the corresponding nice codes.

Table 1. The codes of binary images of C.

Generator

a,B.6

Binary Images

J@=1+x, i(x) = () =1, g1(x) =1+x,25(x) =1,

a(x) =1L p(x)=1+x,q(x)=1+x,r(x)=1.

fO=1+x, ()= () =1, g (x) =1+2°

gz(x)=l+x+x3,a1(x)=l+x,p(x)=l+x,
q(x)=Lr(x)=1.

fO)=1+x, A0 = H(0) =1, g (x) =1+

)

s

1,1,1

1,3,1

1,3,1

g2(x) =l+x+x3,al(x)=1+x,p(x)=1 ,q(x)=1r(x)=1.
S =1+x, fi(x) = fr(x) =1, gi(x) =1+x,g5(x) =1,

a(x) =1L p(x)=1+x,q(x)=1Lr(x)=1.

f)=1+x, fix) = LX) =1, g(x) =1+2°

2, 3, 4

s

2

3. .4

5,1,1

S(x)=l+x+x"+x" +x7, a(x)=1+x+x"+x" +x", 1,51

p(x)=1+x,q(x)=Lr(x)=1.

F@=1+x, (0= () =1, g (x)=1+x>, gy (x) =1+,

a(x)=1+x+x%, p(x)=1+x° g(x) =1+x,r(x)=1.

S =1+x, /i) = () =1, g(x) =1+x+x>

gz(x)=1+x+x2+x3,a1(x)=1+x+x

p(x)=1+x,q(x)=1+x,r(x)=1.

2

S =1+x,fi(X) =1, f(x)=0,g(x) =1+x",

gz(x)=1+x+x2 +x°

+x4 +x5 +x6,

qg(x)=1Lr(x)=1.

f)=1+x, fi(0)= L) =1, g(x) =1+ x+x>

3

+x,

g =1+x2 +x7, ay(x) =1+x, p(x) =1+x,

g(x)=1+x,r(x)=1.

3

+x +x7,

a(x)=1+x", p(x) =1+x,

+x4,

fE=1+xea? 424, (0= ) =147 407,

gl(x)=1+x3,g2(x)=1+x, al(x)=1+x+x2,p(x)=l+x3, 7

qg(x)=1+x,r(x)=1.

1,3,3

4

1,7,1

1,7,1

1,7,1

3,3

[6,2,3]*

[10, 3, 4]*

[10, 4, 3]*

[10, 6, 2]*

[14,2, 8]*

[16, 4, 6]

[18, 5, 6]

(18,2, 10]

[18,7,4]

(22,7, 4]

4. Conclusion

In this paper, we have studied additive cyclic codes over
the ring Z,RS , where R=Z, +uZ,, u* =0 mod 2, and

S=27,+uZ, +u’Z, , u> =0 mod 2. We have given the

definition of Z,(Z, +uZ,)(Z, +uZ, +u*Z,) -additive codes

with generator matrices and parity-check matrices.
Furthermore, the fundamental results on the generator
polynomials and spanning sets for these additive cyclic codes
of block length (a,B,6), where & is odd have been

obtained. Finding Z,RS -additive cyclic code and its dual of
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arbitrary block length (a,(,6) may be an interesting

problem.
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